

Virtual demo and practical application workflow

Martino Gubert, Eurac Research Online, 11/06/2024

INFINITE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **958397**

Contents - Scope and Methodology

- Scope -> why we are doing it?
- Methodology -> How we do it!
- Practical application

Scope:

Test the implementation of the INFINITE BIM-Platform and its related Plug-ins to boost the market activation for deep industrialized retrofit.

Develop a SERVICE to perform a fast Techno-economic analysis for building deep industrialized renovation

Method - INFINITE service:

Techno-economic analysis for a deep industrilized retrofit

INFINITE boudary INFINITE service **O&M FAST SCENARIOS BIM-P PLATFORM** one team **DATA REPOSITORY** Dobatek INEF 44 **ENERGY AND Building Owners / Real Estate / Property management PERFORMANCE FAST** All CALCULATIONS eurac **Renovated Buildings** State of Art research **TECHNO-ECONOMIC** FEASIBILITY LCA FAST **SCENARIOS TO DRIVE** CALCULATION THE INVESTMENTS GreenDella **INSTALLATION GUIDELINES** HUYGEN LCC FAST **INDUSTRIALIZED SOLUTIONS** CALCULATION FOR RETROFIT eurac eurac eurac research research EDERA research

Method-> Industrialized Techno-economic analysis

eurac research 4

Practical application on a Virtual Demo Case in Spain

Techno-economic analysis for a deep industrialized renovation with INFINITE technologies

1st Virtual DEMO -> SPAIN

VIRTUAL DEMO

ALICANTE City Council - Barrio Juan XIII 2º Sector – Alicante - SPAIN

The municipal housing board of Alicante (social housing provider) will retrofit 740 homes distributed in 53 buildings in the Juan XXIII neighbourhood of Alicante using own funds and state aid. The forecast is that the works begin in 2022. In addition, other buildings in the same neighbourhood and the same typology were retrofitted about 7 years ago and the results of the traditional rehabilitation performed with insulation from the outside could be compared with the INFINITE concept and preliminary study. Energy Efficiency studies were performed and could be used.

BUILDING TYPE Number of dwellings per floor: 4	WINDOWS -> Casement windows, double leaf, steel frame, single glazing.		
Number of floors: 4 floors	Dimensions: ->Width: 0.80 m / 1.70 Hight: 1.30 m		
built	Set back: 0.15 m		
Useful area: 61.2m2 Useful area of common elements: 110.5 m2 built	<u>Frame</u> : -> Steel windows without thermal break Frame ratio: 10%; Casement window Thermal transmittance U (W/m2K): 5.70	n T	
no.5 mz butt.	<u>Glass</u> : -> Thickness: 3 mm; Solar factor: 0.85 Thermal transmittance U (W/m2K): 5.70	1	

Façade 3: North

Facade 2: West

Adiabatic party wall 1

Modelling and BIM-P interaction

From drawings to 3D model to stratigraphy characteristics

Data

Owner

engagement

Taking the plans and elevations as reference, the building is modelled in Revit. Only the heated volumes are considered, leaving out the staircase

Energy analysis

From the BIM-P to the Energy plug-in

Groups wall Hierarchy T Last_windows3 - ItcGroup East_Windows4 - IfcGroup West_Slab - IfcGroup East_Slab - IfcGroup West_Roof - IfcGroup East_Roof - IfcGroup West_ExtWall - IfcGroup - 🕞 Basic Wall:SVD_Exterior:382547 - IfcWallStandardC 🕞 Basic Wall:SVD_Exterior:383056 - IfcWallStandardC Basic Wall:SVD_Exterior:383231 - IfcWallStandardC East_ExtWall - IfcGroup West_IntWall1 - IfcGroup East_IntWall1 - IfcGroup West_IntWall2 - IfcGroup East IntWall2 - IfcGroup

Creation of element groups in BIM-p and importing the model into Encome. A check was made of the geometric data and parameters imported into Encome, heating systems were entered and building occupancy data estimated.

Energy Results Retrofit concept

Measures:

900 sqm of Prefabricated facade + roof insulation (6cm insulation)
120 sqm of Window replacement with Uvalue 1
Adding Cooling system (split centralized

system)

<u>Results:</u>

-98% of Yearly heating Consumption+ 62 kWh/sqm for the cooling summer comfort

Costs analysis tool

Building features and geometrical characteristics facciata ovest 250,8 Area copertura 425 n, plani - 4 numero app 250.8 92 h interpiano 3 facciata est Area singolo app numero moduli facc n. stanze app finestra 1 [mq] 1,04 Facciate verso intr 306 4 64

1	these street	4164		interio ester	44.0	or staute haterting	
8	inestre in pianta	52,8	Pe	srimetro inten	34	area strisce PV facciata	
9						Building 3d model	
			Superfici	Superfici	Vano		
10			finestrat	riscaldate	scala		
11	Nord	esterno	-		51,84		ş
12	HOID	m. divisori	+	224,4			1
13	Est	esterno	8,58	216,72	-		1
14	Est	cortile	6,24	176,88	13,2	10	
15	Sud	esterno	- ÷ - 1		51,84	112	
16	300	m. divisori		224,4		112.25	
17	Dunt.	esterno	8,58	216,72	-	1.1.1	5
18	Oversi	cortile	6,24	176,88	13,2	611-	5
19	Copertura proiezione			398,51	30,66	1	-
20	tot palazzina		118,56		-		
-							-

INDUSTRIALIZED SCENARIO

M	laintenance Costs							
-	% Maintenance costs Construction	1.50%						
	Interestrate	1,51%	choice.	Constructi on costs	Maintenan ce %	Maintenan Ce coste	Lifeapan jyearj	
	Prefabricated - industrialized							
	Main components							
	Prefabricated facade passive modu	ile w/o ex	1	79240	1,5%	1188.6	50	
	Prefabricated roof passive module	w/o exter	0	44625	1,5%	669,4	60	
	Windows installed offsite (overall	costs)	0	63352	1,5%	800,3	50	
	New prefabricated balconies		0	0	1,5%	0,0	50	
	Energy system							
	Technical room with HP for H/C/DH	W	0	0	1,5%	0,0	15	
	Integration into the facade of VMU	with ducts	0	92800	1,5%	1392.0	50	
1	Micro-HP single room (H/C/Air)		0	103356	1,5%	1550.3	15	
	Double flux VMC with recovery integrated are		0	0	1,5%	0.0	15	
	trickle vent to be added to the win	dow	0	12672	1,5%	190,1	25	
	modular technical room		0	0	1,5%	0,0	50	
1	New electrical system		0	25106	1,5%	376,6	25	
1	Photovoltaics (roof)		0	21250	1,5%	318,8	25	
			0	31920	1,5%	478,8	25	
	die e. Desserverstiere		0	40000	1.584	600.0	15	

16000

1,5%

1,5%

240,0

2298.2

	2								
	3		INI	DUSTRIALI	ZED SCE	NARI	0		
	4	Operati	ional costs	Variant 1	Variant 2		-		
Lifeapan	15	Interest rate (R _m)	151	141 0	151	Energy price (KAWh)		0.230	
Deput	0	inflation rate (H.)	103						
	/ B	Equity interest	ŭ	0	0				
50	9					-			_
60	10		Year	0	4	2	3	4	5
50	11		Discount rate (Rom)	1,000	0,995	0,990	0,965	0,960	0,9
50	12		Energy price (E/W/h)	0,230	0,23338	0,23681	0,24029	0,24383	0,24
50	13		Energy cost - system 2 (6kWh)	0,000	0,000	0.000	0,000	0,000	0,0
	14	Heating	Energy consumed cost [4]	8.570	552	560	568	576	58
16	15		Energy consumed cost attualised (4)	8.570	549	554	559	565	57
10	16		Cumulated energy consumed cost [8]	8.570	9.115	9.672	10 232	10.797	11.3
00	.17		Energy cost - system 1 (6/kWh)	0,230	0,233	0,237	0,240	0,244	0,2
10	18		Energy cost - system 2 (EXWh)	0,000	0.000	0,000	0,000	0.000	0,0
12	.9	Cooling	Energy consumed cost [4]	744	755	766	777	789	80
20	10		Energy consumed cost attualised [6]	744	751	758	786	773	78
50	11		Cumulated energy consumed cost (6)	744	1.495	2.254	3.020	3.793	4.5
25	12		Energy cost - system 1 (RAWh)	0,100	0.101	0,103	0,104	0.106	0,1
45	- !3		Energy cost - system 2 (6/kWh)	9,100	0,101	9,103	0,104	0,106	0,1
25	14	DHW	Energy consumed cost [4]	205	.208	211	214	217	22
10	15		Energy consumed cost attualised (4)	205	206	208	210	212	21
15	16		Cumulated energy consumed cost (6)	205	206	415	625	838	1.0
25			Franker, and a start strategy			- A. 1993	10.00	0.044	

1 F G II

319,2

10

Results

The result is a sinthetic 4 page report

eurac INFINITE Virtual Demo Case - SPAIN research

OBJ: Techno-economic analysis for a deep industrialized renovation with INFINITE technologies

The municipal housing board of Alicante (social housing provider) will retrofit 740 homes distributed in 53 buildings in the Juan XXIII neighbourhood of Alicante using own funds and state aid. The forecast is that the works begin in 2022. In addition, other buildings in the same neighbourhood and the same typology were retrofitted about 7 years ago and the results of the traditional rehabilitation performed with insulation from the outside could be compared with the INFINITE concept and preliminary study. Energy Efficiency studies were performed and could be used.

BUILDING TYPE: The building is characterised by two blocks joined by a staircase, facing east and west. The building has four floors and four flats per floor, for a total of 16 dwellings. The north and south walls are bordered by other residential buildings in line. The floor area of the building is approximately 400 sqm. the external walls are composed of two layers of brick with an air space in between, with a total transmittance of 1,64 W/m2K.

ntation, transmittance and thermal capacity values. SVD BIM Model 24052 In pressing leases

in IFC format and imported into INFINITE BIM-p with verification of the ad elements. Element groups are created in BIM-p and the model is imported

ned to obtain the energy consumption data.

mi attesi con i vari scenari da analisi dei tool sopra

general feedback on COSTS and TECHNOLGOIES to be

Let's boost the industrialized renovation together!

We need to act now! No more excuses....

Consortium

Coordinator **Project Partners** eurac GRÜN Statt Grau HUYGEN EDERA one team GreenDelta research INCENSEURS & ADVISEURS oba<mark>tek</mark> INEF4*6* **RUBNER** EICI managing technologies 谻 IVE INSTITUTO VALENCIANO de la EDIFICACIÓN GENERALITAT VALENCIANA Next Sense SVN/\GE Vicepresidencia Segunda y Conselleria de Vivienda y Arquitectura Bioclimática ഖ \odot Stanovanjskopodjetje VORTICE vilogia SERNEO COSTRUIRE IN LEGNO

Thank you

Martino Gubert Eurac Research martino.gubert@eurac.edu

eurac research

INFINITE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958397